\qquad MATHS

YEAR GROUP \qquad 8

	Cycle 1 Autumn	Cycle 2 Spring	Cycle 3 Summer
Substantive knowledge - Essential knowledge \& conceptual understanding of the National Curriculum	Number and Proportion and Algebra NP9 - Estimation and Use of Calculator A3 - Manipulating and Simplifying Expressions 2 A4 - Linear Equations NP10 - Proportional Reasoning NP11 - Ratio	Number and Proportion, Algebra and Geometry GM2 - Polygons \& Angles GM3 - Area A5 - Formulae A6 - The Cartesian Grid	Algebra and Statistics and Probability A6 - The Cartesian Grid (2) SP1 - Discrete Data SP2 - Bivariate Data \& Time Series A7 - Sequences 1
Disciplinary knowledge - what skills are practised?	NP9 - Estimation and Use of Calculator: - Using the calculator effectively. - Timetables - with and without the time button on the calculator. Solving problems with time accurately and by estimating. Converting units of time with/without calculator. - Approximating the position of numbers on a number line, approximate metric/imperial conversions (with a calculator). - Approximating powers and roots. - Error intervals for rounded numbers, including representing on a number line. - Estimating the answer to calculations. - Related calculations and truncation and error intervals.	GM2 - Polygons \& Angles: - Labelling and recognising the features of triangles (including sum of angles). - Naming, labelling and recognising the features of quadrilaterals (including sum of angles). - Naming and recognising the features of other polygons, including interior angles increasing by 180. - Angles on a straight line, around a point, vertically opposite. - Angles in parallel lines (alternate, corresponding, co-interior). - Bearings. GM3 - Area: - Defining area, counting squares, rectilinear area. - Area of triangles and quadrilaterals (incl. kite, parallelogram, trapezium). - Area of a circle, always give answers in exact form and rounded. - More complex areas of compound shapes, problems involving area.	A6 - The Cartesian Grid (2): - Drawing and recognising graphs of $y=n$ and $x=n$; finding integer gradients using 1 across, 'm' up/down. - Use the gradient and y-intercept of a line to write the equation in the form $y=m x+c$. - Is a point on a line? - Identify parallel lines from their equations. SP1 - Discrete Data: - The data handling cycle, using data to address a hypothesis, overview of the types of data, asking good questions. - Categorical (qualitative) data and frequency tables. - Graphical representations of categorical data - bar charts, pictograms, pie charts. - Numerical (quantitative) data discrete and continuous, ungrouped and grouped frequency tables.

	- Simplifying ratios, including those using fractions scaled up to make integers. - Unit ratios, applications to scale drawings and maps. - Fractions from ratios - expressing each part as a fraction of the whole and writing equivalent ratios as equivalent fractions. - Finding the value of parts of a ratio given other parts or the whole.		- Find missing terms in a sequence. - Find and use the nth term of an arithmetic (linear) sequence. - Recognise common sequences (triangular numbers, square numbers, cube numbers, Fibonaccistyle sequences). - Working with visual and algebraic representations of arithmetic sequences.
Key questions (What is the learning about?)	Do students have a basic understanding on using the school specified calculator? Can students apply estimation in a variety of contexts? Have the students a secure understanding of manipulating expressions and linear equations? Do the students understand the difference between direct and inverse proportion? Can the students recognise the similarities between fractions and ratio?	Are students able to use addition, subtraction and shape knowledge to solve problems with angles and area? Do students have a secure understanding of the properties of shapes? Are students able to transfer their knowledge on equations to using formulae? Can students apply knowledge of the four quadrants to different position and direction contexts?	Can the students make connections between number relationships and their algebraic and graphical representations? Can the students sketch and produce graphs of linear functions using equations x and y ? Are the students able to apply statistics knowledge to draw a variety of graphs and tables? Can the students construct and interpret appropriate tables, charts and diagrams for ungrouped and grouped numerical data? Are the students able to make and test conjecture about patterns and relationships? Can the students generate terms of a sequence from a term-to-term rule and position-to-term rule?? Are the students able to recognise arithmetic sequences?

Assessment	Live marking during the lesson with misconceptions addressed during the lesson. End of topic PPC: Estimation and Use of Calculator, Manipulating and Simplifying Expressions 2, Linear Equations, Proportional Reasoning and Ratio. EOTT	Live marking during the lesson with misconceptions addressed during the lesson. End of topic PPC: Polygons and Angles, Area and Formulae. EOTT	Live marking during the lesson with misconceptions addressed during the lesson. End of topic PPC: The Cartesian Grid, Discrete Data, Bivariate Data and Sequences 1. EOYT
Literacy (L),Numeracy (N), Oracy (O) opportunities	Word problems presented to students each lesson where they have to understand the mathematical vocabulary to solve the problems. Answers to questions posed by the teachers are answered using mathematical language with reasoning where appropriate developing key vocabulary and confidence in talking mathematically. Peer on peer support when answering questions in class. Key words are displayed at the beginning of a new lesson. Spellings are corrected during live marking and book reviews.		
Cross Curricular Opportunities	Ratio and Proportional Reasoning links to Food Tech.	Links to DT and Art.	Links to Citizenship (statistics), graphs with ICT and Geography for representation of data.
SMSC / Character/Careers/Cultural Capital (personal development)	Moral - Across the school, we encourage respect including teaching the value of listening to others views and opinions on problem solving. Students know it is okay to make mistakes and know this is how we learn; we encourage students to find their specific errors and then learn from these leading to deeper learning. Social - In classrooms, we look for opportunities for pupils to use mini-whiteboards to promote self-esteem and build selfconfidence. Collaborative learning in the classroom is encouraged in the form of listening and learning from each other which develops their mathematical voice and logical reasoning skills. We participate in team maths challenges for increased pupil involvement. Cultural - We explicitly teach areas of Maths in lots of different subjects across the school to show students the importance of Maths in different roles, for example: statistics in Geography and Science; finance in Citizenship; chronology in History and proportion in Food Tech.		
Equality and Diversity	Diverse representation used with slides presented to students. Maths display boards has a Mathematician of the Month and also Famous Mathematicians from Around the World.		
Super Curriculum (personal development)	UKMT Challenge Dr Frost Maths TT Rockstars	UKMT Challenge Dr Frost Maths TT Rockstars	UKMT Challenge Dr Frost Maths TT Rockstars

