\(\left.\begin{array}{|l|l|l|l|}\hline \& Cycle 1 \\
Autumn \& Cycle 2 \\

Spring\end{array}\right]\)| Cycle 3 |
| :--- |
| Summer |

	- Similarity of length, proving shapes are similar, finding scale factors and writing equivalent sides as equivalent ratios. - Enlargement (including negative and fractional enlargements) - knowing that enlargements produce similar shapes. - Conditions for congruent triangles simple examples, getting familiar with terms. GM5 - Right-angled Triangles: - Pythagoras' Theorem in 2D to find missing sides. - Proving a triangle is right-angled with Pythagoras. - Identifying Pythagorean triples. - Pythagoras to find the distance between two points. - Trigonometric ratios for finding missing sides in right-angled triangles. - Trigonometric ratios for finding missing angles in right-angled triangles. - Exact values of sinq, cosq and tanq for $q=0,30,45,60,90$ by heart. - Problems involving Pythagoras and trigonometry (including bearings), method selection practice.	- Theoretical probability - formalising language and notation, calculating. - Sum of probabilities of all mutually exclusive events = 1 . - Generate theoretical sample spaces, including systematic listing of combinations and outcomes, and use these to calculate probabilities. - Recording outcomes and possibilities using frequency trees, two-way tables and simple Venn diagrams - use these diagrams to calculate probabilities. A9 - Contextual Graphs: - General "real-life" graphs, interpreting y-intercepts as a fixed value/charge, etc, and gradient as a rate of change in context. - Drawing, reading from and extrapolating from conversion graphs. - Introduction to speed, distance, time. - Distance-time graphs, including finding the average speed, and the speed of a section as the gradient of the line. - Velocity-time graphs, including finding the acceleration as the gradient and displacement as the area under the graph.	- 2D representations of 3D shapes constructing and interpreting nets, plans and elevations. - Planes of symmetry. - Loci-fixed distance from a point, fixed distance from a line, equidistant from two points, equidistant from two lines. SP4 - Continuous Data: - Measures of central tendency of grouped data - mean, mode and median. - Graphical representations of continuous and grouped data cumulative frequency and boxplots (unequal and equal class widths). - Measures of spread - interquartile range, including why it is better than the range. - Compare data sets through graphs, central tendency and spread.
Key questions (What is the learning about?)	Can students write large and small numbers in standard form? Have the students a secure understanding of the four transformations?	Are students able to represent linear equalities on a number line? Are students able to represent inequalities on a graph? Can students apply the sum of probabilities is $=1$?	Have the students a secure understanding of the language associated with circles? Can the students convert between 2D and 3D measures? Can students interpret statistical measures in context and

	Do the students understand how to use Pythagoras theorem? Can the students recite the exact values for sinq, cosq and tanq for $q=0,30,45$, 60 and 90 degrees?	Are students able to use frequency trees, two-way tables and Venn Diagrams to solve probability questions? Have the students a secure understanding of distance/speed/time relationship? Can students interpret 'real-life' graphs?	compare summary data? Can students choose appropriate formats to present data for clear interpretation?
Assessment	Live marking during the lesson with misconceptions addressed during the lesson. End of topic PPC: Standard Form, Congruency and Similarity and Rightangled Triangles. EOTT	Live marking during the lesson with misconceptions addressed during the lesson. End of topic PPC: Linear Inequalities, Introduction to Probability and Contextual Graphs. EOTT	Live marking during the lesson with misconceptions addressed during the lesson. End of topic PPC: Circles, Advanced Drawing, Measuring and Constructing and Continuous Data. EOYT
Literacy (L),Numeracy (N), Oracy (O) opportunities	Word problems presented to students each lesson where they have to understand the mathematical vocabulary to solve the problems. Answers to questions posed by the teachers are answered using mathematical language with reasoning where appropriate developing key vocabulary and confidence in talking mathematically. Peer on peer support when answering questions in class. Key words are displayed at the beginning of a new lesson. Spellings are corrected during live marking and book reviews.		
Cross Curricular Opportunities	Links to DT and Art	Probability links to most topics as a 'preference'.	s to DT, Art and ICT.
SMSC / Character/Careers (C) (personal development)	Moral - Across the school, we encourage respect including teaching the value of listening to others views and opinions on problem solving. Students know it is okay to make mistakes and know this is how we learn; we encourage students to find their specific errors and then learn from these leading to deeper learning. Social - In classrooms, we look for opportunities for pupils to use mini-whiteboards to promote self-esteem and build selfconfidence. Collaborative learning in the classroom is encouraged in the form of listening and learning from each other which develops their mathematical voice and logical reasoning skills. We participate in team maths challenges for increased pupil involvement. Cultural - We explicitly teach areas of Maths in lots of different subjects across the school to show students the importance of Maths in different roles, for example: statistics in Geography and Science; finance in Citizenship; chronology in History and proportion in Food Tech.		
Equality and Diversity	Diverse representation used with slides presented to students. Maths display boards has a Mathematician of the Month and also Famous Mathematicians from Around the World.		

Super Curriculum (personal development)	UKMT Challenge Dr Frost Maths	UKMT Challenge Dr Frost Maths	UKMT Challenge Dr Frost Maths

